應用邊緣偵測法於地電阻試驗結果之地層分界判釋

蕭仲富 馮正一*

摘要本研究應用拉氏邊緣偵測法 (Laplacian Edge Detection, LED) 與基岩邊緣偵測法 (Bedrock Edge Detection, BED) 於地電阻剖面法 (Electrical Resistivity Tomography, ERT) 所測得之資料,進行地層分界判釋並探討此兩種方法之成效。本研究亦以地電阻正算模型之數值模擬結果,分析地形效應對地層分界判釋之影響。分析結果發現基岩邊緣偵測法與拉氏邊緣偵測法各有其適用性。本研究以台中縣東勢鎮東勢林場之邊坡進行 ERT 現地試驗,並配合鑽孔資料以輔助地層分層判釋之準確性。

關鍵詞:地電阻剖面法、邊緣偵測、地形效應。

Application of Edge Detection Methods on Interpretation of Slope Strata from Electrical Resistivity Tomography Outcomes

Chung-fu Shiao Zheng-yi Feng*

ABSTRACT This study applied the methods of Laplacian Edge Detection (LED) and Bedrock Edge Detection (BED) to Electrical Resistivity Tomography (ERT) data for locating the interfaces of strata. The effectiveness of the two methods was discussed. This study also used numerical forward models of ERT to discuss the influence of the topography effect on locating the interfaces of the strata. The results indicate the BED and LED methods have different suitability for different applications aspects. We performed a field ERT survey at Dong-Shi Forest Farm and the test results were used with the borehole data to increase the interpretation accuracy of the interface locations.

Key Words: Electrical resistivity tomography, bedrock edge detection, topography effect.

一、前 言

本研究探討拉氏邊緣偵測法與基岩邊緣偵測法應 用於地電阻剖面影像法 (Electrical Resistivity Tomography, ERT) 試驗結果之地層分界偵測工 具。本研究亦針對於台中縣東勢鎮東勢林場之邊坡進 行多期現地 ERT 試驗後,應用此二法分析地層內之岩 層分界。地電阻法自 20 世紀中期發展起即廣泛應用於 地下狀態之偵測,尤其對於地下水、地層材料具有極高的辨別能力,具有施測方式簡單、快速與經濟性較高等優點。然地電阻剖面法施測時,除電極排列方式、 反算程序之方法對判讀結果有所影響外,於非水平地表時,極易受到地形效應影響以致偏差(梅興泰等, 2006),經常地表傾斜即會產生地形效應。應用地形效應修正法,可系統性地研究坡度對結果判讀之影響。 為增進 ERT 資料之可判釋度,使其應用於斜坡、谷地

國立中興大學水土保持學系

Department of Soil and Water Conservation, National Chung Hsing University, Taichung, Taiwan, R.O.C.

^{*}Corresponding Author. E-mail : tonyfeng@nchu.edu.tw

或凹地地區之地層勘測更為可靠。本研究先使用正算 模型模擬不同坡度變化與坡型進行地形效應之探討, 使用兩個邊緣偵測法與ERT法進行分析,並就如何尋 找地層邊界進行探討,且應用正算模型模擬資料與 ERT 現地資料比較地層偵測法:拉氏邊緣偵測法 (Laplacian edge detection, LED; Hsu, et al., 2010) 與 基 岩 邊 緣 偵 測 法 (Bedrock Edge Detection, BED; Geotomo, 2010),比較兩者之優 缺點與適用性。

二、研究方法

1. 研究流程

本研究流程可分為兩個部分:(1) 拉氏邊緣偵測法 與基岩邊緣偵測法應用於地層偵測之適用性;(2) 地表 傾斜所產生之地形效應對地層偵測之干擾程度。本研 究將以 Res2Dmod (Geotomo, 2010) 軟體建構不同 坡度地層之簡化模型進行模擬,並應用梅興泰等 (2006) 所提出之地形修正方法對視電阻值進行校 正,應用 LED 法與 BED 法進行判釋結果比對,探討 何者為佳及其適用性。再將這些方法應用於台中東勢 鎮東勢林場邊坡之實測數據,配合鑽探資料進行邊界 偵測方法之驗證。

地表坡度變化之地形效應影響與修正模式

地電阻剖面法基於靜電學理論計算出視電阻率 (Apparent Resistivity),其如公式1、2所示,不同 的電極排列方式會產生不同的幾何參數。地形變化通 常會對電流傳遞造成影響,顯示當地形為丘陵狀隆起 時,電位線較疏,在相同電流下,量測到之電阻率會 相對的較高。反之低窪地時,電位線較密集,量測而 得之電阻較低,如圖1所示。本研究為貼近呈現現地 之地電阻狀態,採用Loke (2010)之修正公式,對電 流極與電位極之距離長度進行校正,其中公式3為公 式2之延伸

$$\rho_a = K \frac{\Delta V}{I} \tag{1}$$

$$K = \frac{2\pi}{\left(\frac{1}{r_{c1P1}} - \frac{1}{r_{c2P1}} - \frac{1}{r_{c1P2}} + \frac{1}{r_{c2P2}}\right)}$$

$$= \frac{2\pi}{\left(\frac{1}{r_{1}} - \frac{1}{r_{2}} - \frac{1}{r_{3}} + \frac{1}{r_{3}}\right)}$$
(2)

其中 ρ_a 為視電阻率 (Apparent Resistivity), *K* 為幾何參數 (Geometric Factor), ΔV 為電位極量測的 電位差 (Potential Values), *I* 為輸入的電流強度 (Current Values), r_{CaPa} 為CaPa, ΣPa , 之距離。

$$r_1 = \sqrt{(dx^2 + dz^2)} \tag{3}$$

$$dx = x_1 - x_2 \tag{4}$$

$$dz = z_1 - z_2 \tag{5}$$

其中 r_1 為施測點位之電極棒距離之均方根值,dx為水平距離之差值, x_1 為加入高程之距離, x_2 為未加入高程之距離,dz為高程之差值, z_1 為加入高程後之高程, z_2 為加入高程前之高程,以修正地形對電阻值之影響。

為改善地形效應之影響,本研究採用梅興泰等 (2006)所提出之地形效應修正方法,假設的地層模型 討論地形修正前與修正後對電阻率偵測數據之影響。 此修正方法主要原理在於先求得水平狀態與地形變化 狀態下視電阻值之比值,此比值即為偏差係數 E,再 將原始施測數據除以偏差係數,即完成地形效應之修 正,詳見公式6與公式7:

$$E = \frac{\rho_t}{\rho_h} \tag{6}$$

$$\rho_h' = \frac{\rho_h}{E} \tag{7}$$

其中E為偏差係數、 ρ_h 為水平表面之視電阻值、 ρ_i 為地形效應之視電阻值、 ρ_h 為修正後之視電阻值。 本研究引入此修正方法以探討斜坡坡度變化所產生之 地形效應,在取得不同地形情況之偏差係數後,修正 視電阻值已完成反算程序,本研究使用一組無地形變 化之正算模型之視電阻值,作為上述公式之 ρ_h ,於地 表中加入地形變化經正算模擬計算後而得之視電阻

梅興泰等,2006)

Fig.1 Electrical field variations in concave and convex topographies

值,則為 ρ_{l} ,代入公式6中進行每個網格點之數值修 正,即可得 ρ_{h} ,隨後再進行一次反算,即完成其修正 之程序。

本研究探討地表坡度變化與不同地表坡形對地 下基岩偵測之影響時,先以水土保持技術規範中之坡 度分類 (表1)之下限值做為假設地層之正算模型之坡 度,並採用不同地表坡形之凹坡、凸坡與複合坡做分 析。複合坡乃為假設凹坡及凸坡結合坡形,各坡形之 坡度假設皆為 15。(圖 2)。這些波形的地層分層假設 係參考東勢林場之電阻率實測數據所做的假設 (表 2),模型配置詳見圖 3。本研究採用 Res2Dmod 模組 以正算模式進行分析並應用上述地形效應修正法進行 校正,最後以基岩邊緣偵測法 (Res2Dinv, 2010)對 不同地層與不同地表坡形邊界進行搜尋,探討坡度對 地電阻之影響。

3. 邊緣尋找方法

Hsu, et al. (2010) 與 Res2Dinv (Geotomo, 2010) 分別應用拉普拉斯微分運算子與最大方向梯度 法建構邊界自動搜尋方法,本研究應用這兩種方法於 地層模型中 (圖 3),地層模型使用東勢林場現地測量 之剖面,並假設地層平行於地表。

表 1 坡度分類表

Table 1 Slope grade classifications

坡度級別	角度, degree	分級範圍
一級坡	< 2.86	坡度 5%以下
二級坡	2.86~8.53	坡度超過 5%至 15%
三級坡	8.53~16.7	坡度超過15%至30%
四級坡	16.7~21.8	坡度超過 30%至 40%
五級坡	21.8~28.8	坡度超過 40%至 55%
六級坡	> 28.8	坡度超過 55%

表 2 正算模型分層參數表

Table 2 Parameters for the forward models

土層分類	深度 (m)	電阻設定 ohm	施測方法	電極棒間距 m	施測層數
表土層	0-2	80			
易透水層	2-6	60	Pole-pole	1.5	20
基岩層	6以下	450			

圖 2 不同地表坡形示意圖 (a) 凸坡 (b) 凹坡 (c) 複 合坡

Fig.2 Different topographies (a) Convex slope (b) concave slope (c) complex slope

Fig.3 The simulated strata: (a) model strata layering (b) slope increased

(1) 拉氏邊緣偵測法 (Laplacian edge detection, LED)

拉氏邊緣偵測法 (Hsu, et al., 2010) 應用拉普 拉斯運算子進行地層邊界之尋找。此方法定義當 一次微分梯度最大且二次微分為零之處為所尋 之目標。此法假設不同材料之電阻值會有明顯之 不同,認定一次微分斜率最大處即等同於電阻變 化最大處。但其一次微分為零時,並無法分辨斜 率為正或負,故使用二次微分為零之判斷做為輔 助。Hsu, et al. (2010) 以此法成功地尋找到表 層沉積層或崩積層與基岩之分界,並指出當材料 電阻值變化不明顯時,不建議使用此法。對地層 電阻值取 Laplacian (即進行二階微分) 的公式 如公式 (8、9),將二階微分後為零的點連接後, 即可用以推估地層的交界,其中公式中 *i*為水平 向,*j*為垂直向方向其圖示與圖 4 相同。

$$g_{ij} = \frac{|\rho_{i,j+1} - \rho_{i,j-1}|}{D[(i,j+1),(i,j-1)]} + \frac{|\rho_{i+1,j} - \rho_{i-1,j}|}{D[(i+1,j),(i-1,j)]}$$
(8)

$$C_{ij} = \frac{|g_{i,j+1} - g_{i,j-1}|}{D[(i, j+1), (i, j-1)]} + \frac{|g_{i+1,j} - g_{i-1,j}|}{D[(i+1, j), (i-1, j)]} = 0$$
(9)

其中 g_{ij} 為一次微分梯度值, C_{ij} 為二次微分 梯度值, ρ_{ij} 為座標點電阻值, D_{ij} 為座標點距離。 (2) 基岩邊緣偵測法 (Bedrock Edge Detection, BED)

本研究應用反算軟體 Res2Dinv 之內建基 岩邊緣偵測法,此法以沿深度之電阻最大變化率 作為邊界偵測之基礎 (Loke, 2011)。亦可參考 下列公式 10 所表示之最大方向梯度法 (Maximum of directional gradient algorithm, MDG)進行基岩之邊界偵測。此方 法主要以 3×3 之鄰近網格進行梯度值 (G_{ij})之 計算,分別為水平、垂直與對角方向,以各方向 之梯度最大值為此 (i,j) 點之 G_{ij} 。將各網格 G_{ij} 相互連接後,即為所謂之基岩邊緣線,如圖 4 所 示。此方法相較拉氏緣偵測法不同處,在於此法 增加對角方向之計算 (Nguyen et al, 2005)。

$$G_{ij} = \max \left\{ \begin{array}{l} \frac{|\rho_{i-1,j-1} - \rho_{i+1,j+1}|}{D[(i-1,j-1),(i+1,j+1)]}, \\ \frac{|\rho_{i-1,j} - \rho_{i+1,j}|}{D[(i-1,j),(i+1,j)]}, \\ \frac{|\rho_{i+1,j-1} - \rho_{i+1,j+1}|}{D[(i+1,j-1),(i+1,j+1)]}, \\ \frac{|\rho_{i,j-1} - \rho_{i,j+1}|}{D[(i,j-1),(i,j+1)]} \end{array} \right\}$$
(10)

其中 G_{ij} 為 3×3 之鄰近網格最大梯度值, ρ_{ii} 為座標點電阻值, D_{ii} 為座標點距離

4. 現場試驗試區簡介與配置說明

本研究現場試驗試區選定於台中縣東勢鎮東勢林 場內楓香區道路旁之邊坡上。此區域之地質主要以砂 岩與砂頁岩互層為主,試區之邊坡於1999年921地 震時曾發生大規模之順向坡滑動,其後經數期的邊坡 整治工程而使邊坡漸次穩定。但仍於2007年起又因 降雨陸續發生坡面滑動、排水溝破損、路基掏空與坡 面滲水等現象。因此東勢林場於2009年初再次對此 邊坡進行整治以增進其安全性(黃得勝,2009)。本研 究於2008年至2010年間陸續施行探測,因2008 年底A區有發生過一次淺層滑坡,2009年開始進行 施工,為減少施工對施測數據之影響,選用2008年 之ERT 實測數據進行分析與探討。本研究依楓香道路 之上下邊坡將試區分為A、B二個試區,每區內含2 條測線,相互垂直,總計4條測線。其中A區位於道 路上邊坡,B區位於道路下邊坡,邊坡上散佈些許低

圖 4 最大方向梯度法 (Nguyen et al, 2005)

Fig.4 Algorithm for the maximum directional gradient

矮灌木與雜草,此外試驗區內有兩處鑽孔,位置分別 於A1、A2測線交會點與B1、B2測線交會點。現地 配置與航照正射影像詳見表3與圖5所示。

三、結果與討論

1. 地表坡度變化對之地層岩層搜尋之影響

本研究使用 Res2Dmod 建置不同地表坡度與不 同地表坡度之地層正算模型,隨後以「地形效應修正 法」校準視電阻值,再以 Res2Dinv 反算視電阻值, 再以基岩邊緣偵測法尋找地層之位置。為去除地電阻 反算時之邊界效應,本研究切除左右邊界各 4.5m 後, 以計算範圍共計 36m 之數據進行分析,並以一組「未 經地形效應修正之對照組」與「經地形效應修正組」 相互比較。表 4 即為地形效應修正與否對不同地表坡 度之影響。

本研究之正算模型假設基岩位於地表下 6m 處, 並與地表平行,表4中顯示經基岩邊緣偵測法 (BED) 所找到岩層分界與原始假設之平均距離差與標準偏 差。其中正數顯示較假設的岩層面為低、負數顯示較 假設的岩層面為高。表4中可見,地表坡度為2級坡 至5級坡間時,地形效應修正可明顯的使偏差量降低, 雖無法完全弭平誤差,但可提高基岩邊緣偵測之可信 度;然大於5級坡後,地形效應之修正效應不甚明顯, 且標準偏差變大。從不同地表坡形中,凸坡之修正後 結果不論是岩盤線及邊準偏差皆好於修正前之結果。 凹坡地形其平均差異量所尋找出來之數值為0,但數值 之邊諄偏差 (0.48) 相較還是大於修正過後之值 (0.33),在複合坡中,可能因坡形過於複雜,如同五級 坡般,即使經過修正過後,效果不甚明顯。但從表4 中可見,不論是水平地表或凹凸地形,如非較陡峭之 坡度或較複雜之地形,經地形效應修正過後,其標準 偏差皆有獲得改善而變小。本文僅應用 BED 法於正算 模擬模型,由於地形修正方法是使用「比值法」來進 行修正,如需應用於現地實測 ERT 結果,則須考慮現 地材料之均一性質,並使用水平地形與有高程之地形 進行修正。若地表為非均質材料或地下材料分布變化 大,則不適合應用該方法地形修正法。

Fig.5 The study site

Table	3	The	ERT	survev	ing lavout	
表う	吧	電阻剖	囬法	(ERT)	施測	

施測點位	電極排列方法	測線間距 (m)	測線長度 (m)	施測層數
A1-A1'		1	31	
A2-A2'	Pole-Pole array	1.5	46.5	20
B1-B1'		1.5	46.5	20
B2-B2'		1.5	46.5	

表 4 地形效應與坡度對基岩線尋找之差異量與標準偏差

Table 4 Influence of the topography effect and slope on locating bedrock interface

邊坡分級		2 級坡	3 級坡	4 級坡	5 級坡	6級坡	凸坡	凹坡	複合坡
坡度(degree)		2.86	8.5	16.7	21.8	28.8	-	-	-
地形效應修正前 -	平均差異量, m	-0.3	-0.3	-0.2	-0.2	-0.1	-0.7	0.0	-0.4
	差異量之標準偏差	0.31	0.32	0.42	0.52	0.51	0.81	0.48	0.90
地形效應修正後 -	平均差異量, m	0.1	0.3	0.2	0.3	0.3	-0.4	0.4	-0.2
	差異量之標準偏差	0.22	0.30	0.39	0.40	0.50	0.72	0.33	1.15

2. 邊緣偵測法於正算模型地層之適用性

本節為探討邊緣偵測法的適用性,本研究建立了 一個模擬的正算模型地層進行偵測法的適用性比較, 其地表地形以本研究東勢林場試區假設之。套用了東 勢林場試區邊坡地形線。為減少邊界效應之影響,僅 選取模型地層之中段資料 (圖 6) 進行探討,結果如圖 6 所示(原始二維地電阻大圖請參見附錄),藍色雙點虛 線為 LED 法之一次微分最大處,黃色虛線為 LED 法 之二次微分為零處,綠色雙點線則為 BED 法之偵測邊 緣線。圖 6 中可發現 LED 法所判定出高低電阻落差最 大之處,距地表約2m,與原模型假設之崩積層與風化 層邊界位置相符。然此法無法明顯判釋距地表 6m 處 風化層與基岩之交界面由於使用 Res2Dinv BED 法 時需先決定要偵測之電阻值。在正算模擬所假設之模 型地層中,第二層地層之電阻值為 30 ohm,故設定 搜尋之電阻值為 30 ohm, BED 偵測結果顯示,與假 設基岩位置約略符合。由上述兩結果得知,BED 法判 別基岩之交界面效果較佳,但於邊界判定時,需配合 鑽孔資料或室內試驗等方法確認該偵測地層之電阻 值。LED 法雖對於變異大之區間具有卓越之搜尋準確 度,對於較深處之基岩偵測則較無顯著之效果,但如 應用於無法進行鑽探地區或是僅要尋找崩積層之地 層,此方法則有不錯的效用。

東勢林場試區現場 ERT 與邊緣偵測結果

本研究於東勢林場 A、B 區分別進行地電阻施測, 每一區含有相互垂直之兩條測線,其中測線 1 大致與 坡面傾斜方向一致,測線 2 與坡面走向一致。研究中 除分別就測線剖面進行數據分析外,並將 ERT 剖面圖 組合成柵狀圖,以更清楚的了解地下電阻之分佈狀 態,柵狀圖結果詳見圖 7 (由於圖檔太多,原始二維地 電阻影像圖請見附錄 A)。A 區與 B 區因地表土地利用 不同,導致電阻值有所差異。A 區之表土較為鬆散,B 區則較為堅實,故 A 區之電阻值略高於 B 區。A1-A1' 測線底部岩盤之電阻量測之結果略低於 A2-A2'測線, 其因為 A 區邊坡較短,故 A1-A1'電極間距為 1m 與 A2-A2'橫向測線間距 1.5m 不同,故解析度與量測深 度也有些差異。

配合鑽探資料,可發現此區電阻值主要可區分為 表土層、風化頁岩層與基岩層等三層 (圖 8)(註:為利 解釋本研究定義未風化之岩層為基岩層)。其中表層為 崩積層,材料變異度高且較為鬆散,兩期電阻值變化 亦較大。根據鑽孔資料 A 區之表土層約厚 3m, B 區 約 2m;其下則為風化頁岩,組成以細粒料為主且富含 淋洗後黏土,該黏土層顆粒較細、水力傳導度低,其

圖 6 LED 法與 BED (Res2Dinv) 推估之邊界比較

Fig.7 ERT fence diagrams (2008/10/23) (a) Zone A (b) Zone B

電阻值為三層中最低。此層於 A、B 區皆約為 2m 第 三層基岩層以下則為完整尚未明顯風化之砂岩與頁 岩,電阻值分布均匀,由兩個不同時期 (2008/8/7、 2008/10/23) 之資料中可看出電阻變化不大。

本研究將應用 LED 法與 BED 法至東勢林場現場 實測 ERT 資料上,推估基岩層邊緣之位置,採用 ERT 資料為 2008 年所進行之 2 次施測結果 (2008/8/7、 2008/10/23)。由圖 9, LED 法於現地資料之邊緣偵 測上,所尋到之位置約為2m,對照鑽探資料約是表土 層之範圍,與本研究所要尋找之基岩層交界面略有些 差異,此結果顯示 LED 法可適合用於表土崩積層之偵 測。因使用 BED 地層邊緣偵測需先輸入地層電阻值, 故查閱電阻與鑽孔對照圖 (圖 8), A 區易透水層與岩 層交界之電阻值約為 30 ohm、B 區則為 20 ohm, 故分別將之代入 BED 法中進行分析。分析結果如圖 9 所示。由圖中可觀察 A 區所檢核出之基岩層深度約為 5-6m、傾角角度約 16.6 度。B 區深度為 4-5m,傾 角角度約為17.7度。這兩個傾角與地表坡面略呈平行 且與鑽探資料接近。這也驗證了 BED 可偵測到基岩層 之分界,但須先指定要偵測之地層電阻值。

四、結 論

本研究主要應用地電阻剖面法於地層分界之偵 測,使用正算模型 Res2Dmod 模擬不同坡度與不同坡 型之邊坡以探討 BED 法與 LED 法之適用性和使用地 形效應修正之效果。並應用 BED 法與 LED 法於東勢 林場現地試區之 ERT 結果進行了地層分界偵測。本研 究所得主要結論如下

- 地表坡度為2級坡至5級坡間,地形效應修正可明 顯的使差異量標準差降低。然大於5級坡後,地形 效應之修正效果不甚明顯。地表形狀為凹、凸坡 形,經過修正過後亦可使標準差降低,但複合坡之 地形效應修正效果則較不明顯。
- 基岩邊緣偵測法 (BED 法)雖可判別基岩層之交界 面,但須配合鑽孔資料或室內試驗先獲得欲尋找層 之電阻值。另 LED 法雖對於變異大之區間具有不 錯之搜尋準確度,對於較深處之基岩層偵測則無顯 著之成效,但使用上不需配合其他外部資料,使用 上較簡單。
- 東勢林場試區實測 ERT 資料分析結果,驗證 ERT 可測出該試區之地層分層,也說明了配合少數的鑽 孔即可獲得二維地層分界的剖面圖。

圖 8 測線與鑽孔比對: (a) A 區 (b) B 區

Fig.8 Resistivity versus borehole data (a) Zone A (b) Zone B.

圖 9 岩層線與坡面線對照 (a)A 區 (b)B 區 Fig.9 Slope surface and the bedrock surfaces (a) Zone A (b) Zone B.

作者感謝國科會 NSC 97-2313-B-005-042-MY3 與行政院農委會「坡地保育處裡對入滲與邊坡穩 定效益評估 (一)」計畫之部份支持。

圖 A-1 地電阻剖面(正算模型)

圖 A-2 地電阻剖面_A1 測線(2008/8/7)

Fig. A-2 ERT image_A1(2008/8/7)

Fig. A-3 ERT image_A1(2008/10/23)

圖 A-5 地電阻剖面_A2 測線(2008/10/23) Fig. A-5 ERT image_A2(2008/10/23)

圖 A-6 地電阻剖面_B1 測線(2008/8/7)

Fig. A-6 ERT image_B1(2008/8/7)

圖 A-7 地電阻剖面_B1 測線(2008/10/23) Fig. A-7 ERT image_B1(2008/10/23)

圖 A-8 地電阻剖面_B2 測線(2008/8/7)

圖 A-9 地電阻剖面_B2 測線(2008/10/23) Fig. A-9 ERT image_B2(2008/10/23)

參考文獻

- 行政院農委會水土保持局 (2008),「坡地保育處 理對入滲與邊坡穩定效益評估 (一)」成果報告報告 書,行政院農委會水土保持局. (Soil and Water Conservation Bureau, Council of Agriculture (2008) Effectiveness of conservation treatments to infiltration and stability of slopeland, Final report, SWCB. (in Chinese)).
- 梅興泰、鄭富書、蔡道賜 (2006)「地電阻影像剖 面法對非均質地下實體之模擬分析」,技術學刊, 21(4):396-382. (Mei, H. T., Jeng, F. S. and Cai, D. C. (2006)" Analysis of non- homogeneous physical model simulated for resistivity tomography," *Journal of Technology*,21(4):369-382. (in Chinese)).
- 黃得勝 (2009)「地震與降雨引起順向坡崩塌之研 析」,國立中興大學水土保持學系研究所碩士論 文。(Huang, D.S. (2009) A study of dip-slope landslide induced by earthquake and Rainfall, Master thesis, National Chung Hsing Uni-

versity. (in Chinese)).

- Hsu, H. L., Yanites, B. J., Chen, C. C. and Chen, Y. G. (2010) "Bedrock detection using 2D electrical resistivity imaging along the Peikang River, central Taiwan," *Geomorphology*, 114(3): 406-414. Loke, M. H. (2010) *RES2DINV ver.3.59, Geotomo Software user's manual.*
- 5. Loke, M.H. (2011) personal communication.
- Nguyen, F., Garambois, S., Jongmans, D., Pirard, E. and Loke, M. H. (2005) "Image processing of 2D resistivity data for imaging faults," *Journal of Applied Geophysics*, 57:260-277.

2011年01月17日 收稿 2011年03月28日 修正 2011年05月10日 接受 (本文開放討論至2011年12月31日)